This commit is contained in:
2025-11-14 09:37:35 -08:00
parent 7a9cd2f70e
commit 3593d8cbd2
11 changed files with 5 additions and 4 deletions

View File

@@ -0,0 +1,63 @@
//
// Created by Luca on 9/15/2025.
//
#include <cstdio>
#include "SHAL_CORE.h"
#include "SHAL_GPIO.h"
#include "SHAL_ADC.h"
#include "SHAL_UART.h"
void SHAL_init(){
systick_init();
for(auto i = static_cast<uint8_t>(ADC_Key::S_ADC1); i < static_cast<uint8_t>(ADC_Key::NUM_ADC); i++){ //Init all ADCs
auto adc_key = static_cast<ADC_Key>(i);
ADCManager::getByIndex(i).init(adc_key);
}
SET_ANALOGREAD_ADC(SHAL_ADC1); //Default ADC1 for analogread calls
}
void systick_init(){
SysTick->CTRL = 0; //Disable first
SysTick->LOAD = 0xFFFFFF; //Max 24-bit
SysTick->VAL = 0; //Clear
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk;
}
void SHAL_delay_us(uint32_t us){
uint32_t ticks = us * (SystemCoreClock / 1000000U);
uint32_t start = SysTick->VAL;
//Calculate target value (may wrap around)
uint32_t target = (start >= ticks) ? (start - ticks) : (start + 0x01000000 - ticks);
target &= 0x00FFFFFF;
//Wait until we reach the target
if (start >= ticks) {
//No wraparound case
while (SysTick->VAL > target) {}
} else {
while (SysTick->VAL <= start) {} //Wait for wraparound
while (SysTick->VAL > target) {} //Wait for target
}
}
void SHAL_delay_ms(uint32_t ms){
while(ms-- > 0){
SHAL_delay_us(1000);
}
}
void SHAL_print_register(const volatile uint32_t* reg){
char buff[32];
sprintf(buff, "0x%08lX\r\n", (unsigned long)(*reg));
SHAL_UART2.sendString(buff);
}

View File

@@ -0,0 +1,47 @@
//
// Created by Luca on 9/3/2025.
//
#include "SHAL_EXTI_CALLBACK.h"
#if defined(STM32L412xx)
#elif defined(STM32L422xx)
#elif defined(STM32L431xx)
#elif defined(STM32L432xx)
DEFINE_EXTI_IRQ(0);
DEFINE_EXTI_IRQ(1);
DEFINE_EXTI_IRQ(2);
DEFINE_EXTI_IRQ(3);
DEFINE_EXTI_IRQ(4);
DEFINE_MULTI_EXTI_IRQ(5,9);
DEFINE_MULTI_EXTI_IRQ(10,15);
#elif defined(STM32L433xx)
#elif defined(STM32L442xx)
#elif defined(STM32L443xx)
#elif defined(STM32L451xx)
#elif defined(STM32L452xx)
#elif defined(STM32L462xx)
#elif defined(STM32L471xx)
#elif defined(STM32L475xx)
#elif defined(STM32L476xx)
#elif defined(STM32L485xx)
#elif defined(STM32L486xx)
#elif defined(STM32L496xx)
#elif defined(STM32L4A6xx)
#elif defined(STM32L4P5xx)
#elif defined(STM32L4Q5xx)
#elif defined(STM32L4R5xx)
#elif defined(STM32L4R7xx)
#elif defined(STM32L4R9xx)
#elif defined(STM32L4S5xx)
#elif defined(STM32L4S7xx)
#elif defined(STM32L4S9xx)
#error "Please select first the target STM32L4xx device used in your application (in stm32f0xx.h file)"
#endif
//Link function to EXTI line
void registerEXTICallback(GPIO_Key key, EXTICallback callback){
EXTI_callbacks[getGPIOPinNumber(key)] = callback;
}

View File

@@ -0,0 +1,308 @@
//
// Created by Luca on 9/21/2025.
//
#include "SHAL_ADC.h"
#include "SHAL_GPIO.h"
#include "SHAL_UART.h"
#include <cstdio>
SHAL_Result SHAL_ADC::init(ADC_Key key) {
m_ADCKey = key;
if(!isValid()){
SHAL_UART2.sendString("Not valid\r\n");
return SHAL_Result::ERROR;
}
SHAL_ADC_RCC_Enable_Reg clock_reg = getADCRCCEnableRegister(m_ADCKey); //Clock enable
SHAL_apply_bitmask(clock_reg.reg,clock_reg.mask);
auto clock_select_register = getADCClockSelectRegister();
SHAL_set_bits(clock_select_register.reg, 2, static_cast<uint32_t>(ADC_Clock_Source::SHAL_SYSCLK),clock_select_register.offset); //Set ADC clock
wakeFromDeepSleep();
if(calibrate() != SHAL_Result::OKAY){ //Calibrate
SHAL_UART2.sendString("Calibration failed");
return SHAL_Result::ERROR;
}
if(enable() != SHAL_Result::OKAY){
SHAL_UART2.sendString("Could not enable from init\r\n");
return SHAL_Result::ERROR;
}
configureAlignment(SHAL_ADC_Alignment::RIGHT);
configureResolution(SHAL_ADC_Resolution::B12);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::calibrate() {
SHAL_ADC_Control_Reg control_reg = getADCControlReg(m_ADCKey);
if(disable() != SHAL_Result::OKAY){
return SHAL_Result::ERROR;
}
SHAL_delay_us(1000);
if ((*control_reg.reg & (control_reg.enable_mask | control_reg.disable_mask)) != 0) {
return SHAL_Result::ERROR;
}
SHAL_clear_bitmask(control_reg.reg, control_reg.differential_mode_mask);
SHAL_apply_bitmask(control_reg.reg, control_reg.calibration_mask);
if ((*control_reg.reg & control_reg.calibration_mask) == 0) {
return SHAL_Result::ERROR;
}
if (!SHAL_WAIT_FOR_CONDITION_US(((*control_reg.reg & control_reg.calibration_mask) != 0),500)) { //Wait for conversion
return SHAL_Result::ERROR; //Failed sequence
}
SHAL_UART2.sendString("Calibration OK\r\n");
return SHAL_Result::OKAY;
}
uint16_t SHAL_ADC::singleConvertSingle(SHAL_ADC_Channel channel, SHAL_ADC_SampleTime time) {
auto data_reg = getADCDataReg(m_ADCKey);
auto ISR_reg = getADCISRReg(m_ADCKey);
auto config_reg = getADCConfigReg(m_ADCKey);
SHAL_clear_bitmask(config_reg.reg, config_reg.continuous_mode_mask);
auto sampleTimeReg = getADCChannelSamplingTimeRegister(m_ADCKey, channel);
SHAL_set_bits(sampleTimeReg.reg, 3, static_cast<uint8_t>(time), sampleTimeReg.channel_offset);
addADCChannelToSequence(channel, 0);
if(setADCSequenceAmount(1) == SHAL_Result::ERROR) { return 0; }
if(enable() != SHAL_Result::OKAY) {
return 0;
}
// CRITICAL: Clear ALL relevant flags before starting
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_sequence_mask);
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_conversion_mask);
if(ISR_reg.overrun_mask) {
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.overrun_mask);
}
volatile uint16_t dummy = *data_reg.reg;
(void)dummy;
startConversion();
if(!SHAL_WAIT_FOR_CONDITION_US(((*ISR_reg.reg & ISR_reg.end_of_conversion_mask) != 0), 2000)) {
return 0;
}
uint16_t result = *data_reg.reg;
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_conversion_mask);
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_sequence_mask);
return result;
}
SHAL_Result SHAL_ADC::multiConvertSingle(SHAL_ADC_Channel* channels, const int numChannels, uint16_t* result, SHAL_ADC_SampleTime time) {
auto data_reg = getADCDataReg(m_ADCKey); //Where our output will be stored
setADCSequenceAmount(numChannels); //Convert the correct amount of channels
for(int i = 0; i < numChannels; i++){
auto channel = channels[i];
auto sampleTimeReg = getADCChannelSamplingTimeRegister(m_ADCKey,channel);
SHAL_set_bits(sampleTimeReg.reg,3,static_cast<uint8_t>(time),sampleTimeReg.channel_offset); //Set sample time register TODO un-hardcode bit width?
addADCChannelToSequence(channel,i); //Use index 0 to convert channel
}
startConversion(); //Start ADC conversion
auto ISR_reg = getADCISRReg(m_ADCKey);
for(int i = 0; i < numChannels; i++) {
if (!SHAL_WAIT_FOR_CONDITION_US(((*ISR_reg.reg & ISR_reg.end_of_conversion_mask) != 0),500)) { //Wait for conversion
return SHAL_Result::ERROR; //Failed conversion
}
result[i] = *data_reg.reg;
}
if (!SHAL_WAIT_FOR_CONDITION_US(((*ISR_reg.reg & ISR_reg.end_of_sequence_mask) != 0),500)) { //Wait for conversion
return SHAL_Result::ERROR; //Failed sequence
}
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::enable() {
if(!isValid()){
SHAL_UART2.sendString("Enable failed: Invalid \r\n");
return SHAL_Result::ERROR;
}
SHAL_ADC_Control_Reg control_reg = getADCControlReg(m_ADCKey);
SHAL_ADC_ISR_Reg ISR_reg = getADCISRReg(m_ADCKey);
if(!SHAL_WAIT_FOR_CONDITION_MS((*control_reg.reg & control_reg.calibration_mask) == 0, 100)) {
return SHAL_Result::ERROR;
}
if (*control_reg.reg & control_reg.enable_mask) {
return SHAL_Result::OKAY; //Not an error
}
if (*control_reg.reg & control_reg.disable_mask) {
return SHAL_Result::ERROR;
}
//Clear ADRDY flag by writing 1 to it
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.ready_mask);
//Enable the ADC by setting ADEN
SHAL_apply_bitmask(control_reg.reg, control_reg.enable_mask);
if(!SHAL_WAIT_FOR_CONDITION_MS((*ISR_reg.reg & ISR_reg.ready_mask) != 0, 100)) {
return SHAL_Result::ERROR;
}
//Clear ADRDY again
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.ready_mask);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::wakeFromDeepSleep() {
SHAL_ADC_Control_Reg control_reg = getADCControlReg(m_ADCKey); //ADC Control register
SHAL_clear_bitmask(control_reg.reg,control_reg.deep_power_down_mask); //Wake ADC from sleep
SHAL_apply_bitmask(control_reg.reg,control_reg.voltage_regulator_mask);
SHAL_delay_us(50); //Wait for regulator to stabilize
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::disable() {
if(!isValid()){
return SHAL_Result::ERROR;
}
auto control_reg = getADCControlReg(m_ADCKey);
//Stop any ongoing conversion
if (*control_reg.reg & control_reg.start_mask) {
SHAL_apply_bitmask(control_reg.reg, control_reg.stop_mask);
}
//Only disable if ADC is enabled otherwise it hangs
if (*control_reg.reg & control_reg.enable_mask) {
SHAL_apply_bitmask(control_reg.reg, control_reg.disable_mask);
if (!SHAL_WAIT_FOR_CONDITION_MS(((*control_reg.reg & (control_reg.enable_mask | control_reg.disable_mask)) == 0),500)){
return SHAL_Result::ERROR;
}
}
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::startConversion() {
auto control_reg = getADCControlReg(m_ADCKey);
SHAL_apply_bitmask(control_reg.reg,control_reg.start_mask);
return SHAL_Result::OKAY;
}
bool SHAL_ADC::isValid() {
if(m_ADCKey == ADC_Key::INVALID || m_ADCKey == ADC_Key::NUM_ADC){
return false;
}
return true;
}
SHAL_Result SHAL_ADC::configureResolution(SHAL_ADC_Resolution resolution) {
if(!isValid()){
return SHAL_Result::ERROR;
}
SHAL_ADC_Config_Reg config_reg = getADCConfigReg(m_ADCKey);
SHAL_set_bits(config_reg.reg,2,static_cast<uint8_t>(resolution),config_reg.resolution_offset);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::configureAlignment(SHAL_ADC_Alignment alignment) {
if(!isValid()){
return SHAL_Result::ERROR;
}
SHAL_ADC_Config_Reg config_reg = getADCConfigReg(m_ADCKey);
//TODO check if this needs to be abstracted (Do other platforms have >2 resolution possibilities?
SHAL_set_bits(config_reg.reg,1,static_cast<uint8_t>(alignment),config_reg.alignment_offset);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::setADCSequenceAmount(uint32_t amount) {
if(!isValid()){return SHAL_Result::ERROR;}
if(amount == 0){
return SHAL_Result::ERROR;
}
SHAL_ADC_Sequence_Amount_Reg sequence_amount_reg = getADCSequenceAmountRegister(m_ADCKey);
SHAL_set_bits(sequence_amount_reg.reg, 4, amount - 1, sequence_amount_reg.offset);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::addADCChannelToSequence(SHAL_ADC_Channel channel, uint32_t index) {
if(!isValid()) { return SHAL_Result::ERROR; }
auto sequenceRegisters = getADCSequenceRegisters(m_ADCKey);
auto channelNum = static_cast<uint8_t>(channel);
uint32_t bitSection = (index + 1) % 5;
uint32_t sequenceRegNumber = (index + 1) / 5;
volatile uint32_t* sequenceReg = sequenceRegisters.regs[sequenceRegNumber];
uint32_t bitSectionOffset = sequenceRegisters.offsets[bitSection];
// Clear only the specific 5 bits we're setting, not the entire register
uint32_t clearMask = ~(0x1F << bitSectionOffset);
*sequenceReg &= clearMask;
// Set the new channel number
*sequenceReg |= (channelNum << bitSectionOffset);
return SHAL_Result::OKAY;
}
SHAL_ADC &ADCManager::get(ADC_Key key) {
return m_ADCs[static_cast<uint8_t>(key)];
}
SHAL_ADC& ADCManager::getByIndex(int index) {
if(index < static_cast<int>(ADC_Key::NUM_ADC)){
return m_ADCs[index];
}
return m_ADCs[0];
}

View File

@@ -0,0 +1,126 @@
//
// Created by Luca on 8/30/2025.
//
#include <cstdio>
#include "SHAL_GPIO.h"
#include "SHAL_EXTI_CALLBACK.h"
#include "SHAL_UART.h"
SHAL_GPIO::SHAL_GPIO() : m_GPIO_KEY(GPIO_Key::INVALID){
//Do not initialize anything
}
SHAL_GPIO::SHAL_GPIO(GPIO_Key key) : m_GPIO_KEY(key) {
volatile unsigned long* gpioEnable = getGPIORCCEnable(key).reg;
unsigned long gpioOffset = getGPIORCCEnable(key).offset;
*gpioEnable |= (1 << gpioOffset); //Set enable flag
}
void SHAL_GPIO::setLow() {
auto outputDataReg = getGPIOOutputDataRegister(m_GPIO_KEY);
SHAL_set_bits(outputDataReg.reg,1,0,outputDataReg.offset);
}
void SHAL_GPIO::setHigh() {
auto outputDataReg = getGPIOOutputDataRegister(m_GPIO_KEY);
SHAL_set_bits(outputDataReg.reg,1,1,outputDataReg.offset);
}
void SHAL_GPIO::toggle() volatile {
auto outputDataReg = getGPIOOutputDataRegister(m_GPIO_KEY);
SHAL_flip_bits(outputDataReg.reg,1,outputDataReg.offset);
}
void SHAL_GPIO::setOutputType(PinType type) volatile {
auto outputTypeReg = getGPIOOutputTypeRegister(m_GPIO_KEY);
SHAL_set_bits(outputTypeReg.reg,2,static_cast<uint8_t>(type),outputTypeReg.offset);
}
void SHAL_GPIO::setOutputSpeed(OutputSpeed speed) volatile {
auto outputSpeedReg = getGPIOOutputSpeedRegister(m_GPIO_KEY);
SHAL_set_bits(outputSpeedReg.reg,2,static_cast<uint8_t>(speed),outputSpeedReg.offset);
}
void SHAL_GPIO::setInternalResistor(InternalResistorType type) volatile {
auto pupdreg = getGPIOPUPDRegister(m_GPIO_KEY);
SHAL_set_bits(pupdreg.reg,2,static_cast<uint8_t>(type),pupdreg.offset);
}
void SHAL_GPIO::setAlternateFunction(GPIO_Alternate_Function AF) volatile {
auto alternateFunctionReg = getGPIOAlternateFunctionRegister(m_GPIO_KEY);
SHAL_set_bits(alternateFunctionReg.reg,4,static_cast<uint8_t>(AF),alternateFunctionReg.offset);
}
SHAL_Result SHAL_GPIO::setPinMode(PinMode mode) volatile {
auto pinModeReg = getGPIOModeRegister(m_GPIO_KEY);
if(mode == PinMode::ANALOG_MODE && getGPIOPortInfo(m_GPIO_KEY).ADCChannel == SHAL_ADC_Channel::NO_ADC_MAPPING){
char buff[100];
sprintf(buff, "Error: GPIO pin %d has no valid ADC mapping\r\n", static_cast<uint8_t>(m_GPIO_KEY));
SHAL_UART2.sendString(buff);
return SHAL_Result::ERROR;
}
SHAL_set_bits(pinModeReg.reg,2,static_cast<uint8_t>(mode),pinModeReg.offset); //Set mode
return SHAL_Result::OKAY;
}
void SHAL_GPIO::useAsExternalInterrupt(TriggerMode mode, EXTICallback callback) {
/* ---- Connect PB6 to EXTI6 via SYSCFG ---- */
uint32_t port_b_val = 1; // 0=A, 1=B, 2=C, 3=D, etc.
SYSCFG->EXTICR[1] &= ~(0xFUL << 8); // Clear EXTI6 bits (bits 8-11)
SYSCFG->EXTICR[1] |= (port_b_val << 8); // Set EXTI6 to PB6
/* ---- Configure EXTI line 6 ---- */
EXTI->IMR1 |= (1UL << 6); // Unmask line 6
EXTI->RTSR1 |= (1UL << 6); // Rising trigger enable
EXTI->FTSR1 &= ~(1UL << 6); // Falling trigger disable
/* ---- Enable NVIC interrupt for EXTI lines [9:5] ---- */
NVIC_SetPriority(EXTI9_5_IRQn, 2);
NVIC_EnableIRQ(EXTI9_5_IRQn);
__enable_irq(); //Enable IRQ just in case
}
uint16_t SHAL_GPIO::analogRead(SHAL_ADC_SampleTime sampleTime) {
SHAL_ADC_Channel channel = getGPIOPortInfo(m_GPIO_KEY).ADCChannel;
return GPIOManager::getGPIOADC().singleConvertSingle(channel,sampleTime);
}
void SHAL_GPIO::setAlternateFunction(GPIO_Alternate_Function_Mapping AF) volatile {
setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
auto alternateFunctionReg = getGPIOAlternateFunctionRegister(m_GPIO_KEY);
SHAL_set_bits(alternateFunctionReg.reg,4,static_cast<uint8_t>(AF),alternateFunctionReg.offset);
}
uint16_t SHAL_GPIO::digitalRead() {
auto inputDataReg = getGPIOInputDataRegister(m_GPIO_KEY);
if((*inputDataReg.reg & (1 << 6)) != 0){
return 1;
}
return 0;
}
SHAL_GPIO& GPIOManager::get(GPIO_Key key) {
unsigned int gpioPort = getGPIOPortNumber(key);
uint8_t gpioPin = getGPIOPinNumber(key);
if (m_gpios[gpioPort][gpioPin].m_GPIO_KEY == GPIO_Key::INVALID){
m_gpios[gpioPort][gpioPin] = SHAL_GPIO(key);
}
return m_gpios[gpioPort][gpioPin];
}

View File

@@ -0,0 +1,142 @@
//
// Created by Luca on 9/9/2025.
//
#include "SHAL_I2C.h"
#include "SHAL_GPIO.h"
#include "SHAL_UART.h"
void SHAL_I2C::init(I2C_Pair pair) volatile {
m_I2CPair = pair;
SHAL_I2C_Pair I2CPair = getI2CPair(pair); //Get the I2C_PAIR information to be initialized
//Get the SHAL_GPIO pins for this SHAL_I2C setup
GPIO_Key SCL_Key = I2CPair.SCL_Key; //SCL pin
GPIO_Key SDA_Key = I2CPair.SDA_Key; //SDA pin
SHAL_I2C_Enable_Reg pairI2CEnable = getI2CEnableReg(pair); //Register and mask to enable the I2C peripheral
*pairI2CEnable.reg &= ~pairI2CEnable.mask; //Enable I2C peripheral clock
GET_GPIO(SCL_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE); //Implicitly initializes and enables GPIO bus
GET_GPIO(SDA_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
GET_GPIO(SCL_Key).setAlternateFunction(I2CPair.SCL_Mask);
GET_GPIO(SDA_Key).setAlternateFunction(I2CPair.SDA_Mask);
//These may be abstracted further to support multiple I2C configurations
GET_GPIO(SCL_Key).setOutputType(PinType::OPEN_DRAIN);
GET_GPIO(SDA_Key).setOutputType(PinType::OPEN_DRAIN);
GET_GPIO(SCL_Key).setOutputSpeed(OutputSpeed::HIGH_SPEED);
GET_GPIO(SDA_Key).setOutputSpeed(OutputSpeed::HIGH_SPEED);
GET_GPIO(SCL_Key).setInternalResistor(InternalResistorType::PULLUP);
GET_GPIO(SDA_Key).setInternalResistor(InternalResistorType::PULLUP);
SHAL_I2C_Reset_Reg pairI2CReset = getI2CResetReg(pair);
*pairI2CEnable.reg |= pairI2CEnable.mask; //Enable I2C peripheral clock
*pairI2CReset.reg |= pairI2CReset.mask; //Reset peripheral
*pairI2CReset.reg &= ~pairI2CReset.mask; //Reset peripheral
}
void SHAL_I2C::setClockConfig(uint8_t prescaler, uint8_t dataSetupTime, uint8_t dataHoldTime, uint8_t SCLHighPeriod, uint8_t SCLLowPeriod) {
SHAL_I2C_Timing_Reg clockReg = getI2CTimerReg(m_I2CPair);
*clockReg.reg |= (prescaler << clockReg.prescaler_offset);
*clockReg.reg |= (dataSetupTime << clockReg.dataSetupTime_offset);
*clockReg.reg |= (dataHoldTime << clockReg.dataHoldTime_offset);
*clockReg.reg |= (SCLHighPeriod << clockReg.SCLHighPeriod_offset);
*clockReg.reg |= (SCLLowPeriod << clockReg.SCLLowPeriod_offset);
getI2CPair(m_I2CPair).I2CReg->CR1 |= I2C_CR1_PE; //Enable I2C peripheral
}
void SHAL_I2C::setClockConfig(uint32_t configuration) {
*getI2CTimerReg(m_I2CPair).reg = configuration;
getI2CPair(m_I2CPair).I2CReg->CR1 |= I2C_CR1_PE; //Enable I2C peripheral
}
void SHAL_I2C::masterWriteRead(uint8_t addr,const uint8_t* writeData, size_t writeLen, uint8_t* readData, size_t readLen) {
volatile I2C_TypeDef* I2CPeripheral = getI2CPair(m_I2CPair).I2CReg;
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_BUSY) == 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for not busy\r\n");
return;
}
//Write phase
if (writeLen > 0) {
//Configure: NBYTES = wlen, write mode, START
I2CPeripheral->CR2 = (addr << 1) | (writeLen << I2C_CR2_NBYTES_Pos) | I2C_CR2_START;
for (size_t i = 0; i < writeLen; i++) {
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_TXIS) != 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for TX\r\n");
return;
}
I2CPeripheral->TXDR = writeData[i];
}
//Wait until transfer complete
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_TC) != 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for TC\r\n");
return;
}
}
//Read phase
if (readLen > 0) {
SHAL_UART2.sendString("Read initiated\r\n");
I2CPeripheral->CR2 &= ~(I2C_CR2_NBYTES | I2C_CR2_SADD | I2C_CR2_RD_WRN);
I2CPeripheral->CR2 |= (addr << 1) |
I2C_CR2_RD_WRN |
(readLen << I2C_CR2_NBYTES_Pos) |
I2C_CR2_START | I2C_CR2_AUTOEND;
for (size_t i = 0; i < readLen; i++) {
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_RXNE) != 0 , 100)){
SHAL_UART2.sendString("I2C timed out waiting for RXNE\r\n");
return;
}
SHAL_UART2.sendString("Read byte");
readData[i] = static_cast<uint8_t>(I2CPeripheral->RXDR);
}
}
else{
I2CPeripheral->CR2 |= I2C_CR2_STOP;
}
}
void SHAL_I2C::masterWrite(uint8_t addr, const uint8_t *writeData, uint8_t writeLen) {
masterWriteRead(addr,writeData,writeLen,nullptr,0);
}
void SHAL_I2C::masterRead(uint8_t addr, uint8_t *readBuffer, uint8_t bytesToRead) {
masterWriteRead(addr,nullptr,0,readBuffer,bytesToRead);
}
uint8_t SHAL_I2C::masterWriteReadByte(uint8_t addr, const uint8_t *writeData, size_t writeLen) {
uint8_t val = 0;
masterWriteRead(addr, writeData, writeLen, &val, 1);
return val;
}
SHAL_I2C& I2CManager::get(uint8_t I2CBus) {
if(I2CBus > NUM_I2C_BUSES - 1){
assert(false);
//Memory fault
}
return m_I2CBuses[I2CBus];
}

View File

@@ -0,0 +1,117 @@
//
// Created by Luca on 8/28/2025.
//
#include "SHAL_TIM.h"
#include <cassert>
Timer::Timer(Timer_Key key) : m_key(key){
}
Timer::Timer() : m_key(Timer_Key::S_TIM_INVALID){
}
void Timer::start() {
auto control_reg = getTimerControlRegister1(m_key);
auto event_generation_reg = getTimerEventGenerationRegister(m_key);
auto status_reg = getTimerStatusRegister(m_key);
SHAL_apply_bitmask(control_reg.reg, control_reg.counter_enable_mask); //Enable counter
SHAL_apply_bitmask(control_reg.reg, control_reg.auto_reload_preload_enable_mask); //Preload enable (buffer)
SHAL_apply_bitmask(event_generation_reg.reg, event_generation_reg.update_generation_mask);
SHAL_clear_bitmask(status_reg.reg,status_reg.update_interrupt_flag_mask);
enableInterrupt();
}
void Timer::stop() {
auto control_reg = getTimerControlRegister1(m_key);
SHAL_clear_bitmask(control_reg.reg, control_reg.counter_enable_mask); //Enable counter
}
void Timer::setPrescaler(uint16_t presc) {
auto prescaler_reg = getTimerPrescalerRegister(m_key);
SHAL_set_register_value(prescaler_reg.reg,presc);
}
void Timer::setARR(uint16_t arr) {
auto autoreload_reg = getTimerAutoReloadRegister(m_key);
SHAL_set_register_value(autoreload_reg.reg,arr);
}
void Timer::enableInterrupt() {
auto dma_ier = getTimerDMAInterruptEnableRegister(m_key);
SHAL_apply_bitmask(dma_ier.reg,dma_ier.update_interrupt_enable_mask);
NVIC_EnableIRQ(getTimerIRQn(m_key)); //Enable the IRQn in the NVIC
}
void Timer::init(uint16_t prescaler, uint16_t autoReload) {
SHAL_TIM_RCC_Register rcc = getTimerRCC(m_key);
SHAL_apply_bitmask(rcc.reg,rcc.enable_mask);
setPrescaler(prescaler);
setARR(autoReload);
*getTimerStatusRegister(m_key).reg = 0;
*getTimerDMAInterruptEnableRegister(m_key).reg = 0;
}
void Timer::setPWMMode(SHAL_Timer_Channel channel, SHAL_TIM_Output_Compare_Mode outputCompareMode, SHAL_Timer_Channel_Main_Output_Mode mainOutputMode,
SHAL_Timer_Channel_Complimentary_Output_Mode complimentaryOutputMode) {
auto ccer = getTimerCaptureCompareEnableRegister(m_key);
auto ccmr1 = getTimerCaptureCompareModeRegistersOutput(m_key);
auto bdtr = getTimerBreakDeadTimeRegister(m_key);
uint8_t fullChannelModeMask = static_cast<uint8_t>(mainOutputMode) | (static_cast<uint8_t>(complimentaryOutputMode) << 2);
uint8_t channelNum = static_cast<uint8_t>(channel);
if (channelNum <= 3) {
uint32_t regNum = channelNum / 2; //TODO change later for support for channels 5 and 6
if (channelNum % 2 == 1) {
SHAL_set_bits(ccmr1.regs[regNum], 4, static_cast<uint8_t>(outputCompareMode),
ccmr1.output_compare_2_mode_offset);
} else {
SHAL_set_bits(ccmr1.regs[regNum], 4, static_cast<uint8_t>(outputCompareMode),
ccmr1.output_compare_1_mode_offset);
}
}
uint32_t offset = channelNum * 4;
if (static_cast<uint8_t>(m_key) > 3) {
fullChannelModeMask &= (0b0011); //Clear bits for complimentary output since channels 4,5,6 don't support it
}
SHAL_set_bits(ccer.reg, 4, fullChannelModeMask, offset);
SHAL_apply_bitmask(bdtr.reg, bdtr.main_output_enable_mask);
}
void Timer::setPWMDutyCycle(uint32_t dutyCycle) {
auto reg = getTimerCaptureCompareRegister(m_key);
SHAL_set_bits(reg.reg,16,dutyCycle,0);
}
Timer &TimerManager::get(Timer_Key timer_key) {
//Ensure that we don't try to get invalid timers
assert(timer_key != Timer_Key::S_TIM_INVALID && timer_key != Timer_Key::NUM_TIMERS);
Timer& selected = timers[static_cast<int>(timer_key)];
//Timer queried is not initialized yet (defaults to invalid)
if(selected.m_key == Timer_Key::S_TIM_INVALID){
timers[static_cast<int>(timer_key)] = Timer(timer_key); //Initialize TIMER_KEY
}
return timers[static_cast<int>(timer_key)];
}

View File

@@ -0,0 +1,16 @@
//
// Created by Luca on 8/28/2025.
//
#include "SHAL_TIM_CALLBACK.h"
DEFINE_TIMER_IRQ(Timer_Key::S_TIM1, TIM1_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM2, TIM2_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM6, TIM6_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM7, TIM7_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM15, TIM1_BRK_TIM15_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM16, TIM1_UP_TIM16_IRQHandler)
void registerTimerCallback(Timer_Key key, TimerCallback callback){
timer_callbacks[static_cast<uint32_t>(key)] = callback;
}

View File

@@ -0,0 +1,87 @@
/**
******************************************************************************
* @file SHAL_TIM.h
* @author Luca Lizaranzu
* @brief Related to USART and SHAL_UART abstractions
******************************************************************************
*/
#include "SHAL_UART.h"
#include "SHAL_GPIO.h"
void SHAL_UART::init(UART_Pair_Key pair){
m_key = pair;
SHAL_UART_Pair uart_pair = getUARTPair(pair); //Get the UART_PAIR information to be initialized
//Get the SHAL_GPIO pins for this SHAL_UART setup
GPIO_Key Tx_Key = uart_pair.TxKey; //Tx pin
GPIO_Key Rx_Key = uart_pair.RxKey; //Rx pin
GET_GPIO(Tx_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
GET_GPIO(Rx_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
GET_GPIO(Tx_Key).setAlternateFunction(uart_pair.TxAlternateFunctionMask);
GET_GPIO(Rx_Key).setAlternateFunction(uart_pair.RxAlternateFunctionMask);
SHAL_UART_Enable_Register pairUARTEnable = getUARTEnableReg(pair); //Register and mask to enable the SHAL_UART channel
*pairUARTEnable.reg |= pairUARTEnable.mask; //Enable SHAL_UART line
}
void SHAL_UART::begin(uint32_t baudRate) volatile {
USART_TypeDef* usart = getUARTPair(m_key).USARTReg;
auto control_reg = getUARTControlRegister1(m_key);
SHAL_clear_bitmask(control_reg.reg, control_reg.usart_enable_mask); //Clear enable bit (turn off usart)
usart->CR1 = 0; //Clear USART config
SHAL_apply_bitmask(control_reg.reg, control_reg.transmit_enable_mask); //Enable Tx
SHAL_apply_bitmask(control_reg.reg, control_reg.receive_enable_mask); //Enable Rx
auto baud_rate_reg = getUARTBaudRateGenerationRegister(m_key);
uint32_t adjustedBaudRate = SystemCoreClock / baudRate;
SHAL_set_register_value(baud_rate_reg.reg,adjustedBaudRate);
SHAL_apply_bitmask(control_reg.reg, control_reg.usart_enable_mask); //Turn on usart
}
void SHAL_UART::sendString(const char *s) volatile {
while (*s) {//Send chars while we haven't reached end of s
sendChar(*s++);
}
}
void SHAL_UART::sendChar(char c) volatile {
auto ISR_non_fifo = getUARTISRFifoDisabled(m_key);
if(!SHAL_WAIT_FOR_CONDITION_MS((*ISR_non_fifo.reg & ISR_non_fifo.transmit_data_register_empty_mask) != 0, 500)){
PIN(B3).setHigh();
return;
}
auto transmit_reg = getUARTTransmitDataRegister(m_key);
SHAL_set_register_value_16(transmit_reg.reg, static_cast<uint16_t>(c));
}
SHAL_UART& UARTManager::get(uint8_t uart) {
if(uart > NUM_USART_LINES - 1){
assert(false);
//Memory fault
}
return m_UARTs[uart];
}

View File

@@ -0,0 +1,332 @@
/**
******************************************************************************
* @file system_stm32l4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32l4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* After each device reset the MSI (4 MHz) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32l4xx.s" file, to
* configure the system clock before to branch to main program.
*
* This file configures the system clock as follows:
*=============================================================================
*-----------------------------------------------------------------------------
* System Clock source | MSI
*-----------------------------------------------------------------------------
* SYSCLK(Hz) | 4000000
*-----------------------------------------------------------------------------
* HCLK(Hz) | 4000000
*-----------------------------------------------------------------------------
* AHB Prescaler | 1
*-----------------------------------------------------------------------------
* APB1 Prescaler | 1
*-----------------------------------------------------------------------------
* APB2 Prescaler | 1
*-----------------------------------------------------------------------------
* PLL_M | 1
*-----------------------------------------------------------------------------
* PLL_N | 8
*-----------------------------------------------------------------------------
* PLL_P | 7
*-----------------------------------------------------------------------------
* PLL_Q | 2
*-----------------------------------------------------------------------------
* PLL_R | 2
*-----------------------------------------------------------------------------
* PLLSAI1_P | NA
*-----------------------------------------------------------------------------
* PLLSAI1_Q | NA
*-----------------------------------------------------------------------------
* PLLSAI1_R | NA
*-----------------------------------------------------------------------------
* PLLSAI2_P | NA
*-----------------------------------------------------------------------------
* PLLSAI2_Q | NA
*-----------------------------------------------------------------------------
* PLLSAI2_R | NA
*-----------------------------------------------------------------------------
* Require 48MHz for USB OTG FS, | Disabled
* SDIO and RNG clock |
*-----------------------------------------------------------------------------
*=============================================================================
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32l4xx_system
* @{
*/
/** @addtogroup STM32L4xx_System_Private_Includes
* @{
*/
#include "stm32l4xx.h"
/**
* @}
*/
/** @addtogroup STM32L4xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L4xx_System_Private_Defines
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (MSI_VALUE)
#define MSI_VALUE 4000000U /*!< Value of the Internal oscillator in Hz*/
#endif /* MSI_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 16000000U /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/* Note: Following vector table addresses must be defined in line with linker
configuration. */
/*!< Uncomment the following line if you need to relocate the vector table
anywhere in Flash or Sram, else the vector table is kept at the automatic
remap of boot address selected */
/* #define USER_VECT_TAB_ADDRESS */
#if defined(USER_VECT_TAB_ADDRESS)
/*!< Uncomment the following line if you need to relocate your vector Table
in Sram else user remap will be done in Flash. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS SRAM1_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32L4xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L4xx_System_Private_Variables
* @{
*/
/* The SystemCoreClock variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 4000000U;
const uint8_t AHBPrescTable[16] = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U};
const uint8_t APBPrescTable[8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U};
const uint32_t MSIRangeTable[12] = {100000U, 200000U, 400000U, 800000U, 1000000U, 2000000U, \
4000000U, 8000000U, 16000000U, 24000000U, 32000000U, 48000000U};
/**
* @}
*/
/** @addtogroup STM32L4xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32L4xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system.
* @retval None
*/
void SystemInit(void)
{
#if defined(USER_VECT_TAB_ADDRESS)
/* Configure the Vector Table location -------------------------------------*/
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET;
#endif
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 20U)|(3UL << 22U)); /* set CP10 and CP11 Full Access */
#endif
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is MSI, SystemCoreClock will contain the MSI_VALUE(*)
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***)
* or HSI_VALUE(*) or MSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) MSI_VALUE is a constant defined in stm32l4xx_hal.h file (default value
* 4 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSI_VALUE is a constant defined in stm32l4xx_hal.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***) HSE_VALUE is a constant defined in stm32l4xx_hal.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp, msirange, pllvco, pllsource, pllm, pllr;
/* Get MSI Range frequency--------------------------------------------------*/
if ((RCC->CR & RCC_CR_MSIRGSEL) == 0U)
{ /* MSISRANGE from RCC_CSR applies */
msirange = (RCC->CSR & RCC_CSR_MSISRANGE) >> 8U;
}
else
{ /* MSIRANGE from RCC_CR applies */
msirange = (RCC->CR & RCC_CR_MSIRANGE) >> 4U;
}
/*MSI frequency range in HZ*/
msirange = MSIRangeTable[msirange];
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case 0x00: /* MSI used as system clock source */
SystemCoreClock = msirange;
break;
case 0x04: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x08: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x0C: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> 4U) + 1U ;
switch (pllsource)
{
case 0x02: /* HSI used as PLL clock source */
pllvco = (HSI_VALUE / pllm);
break;
case 0x03: /* HSE used as PLL clock source */
pllvco = (HSE_VALUE / pllm);
break;
default: /* MSI used as PLL clock source */
pllvco = (msirange / pllm);
break;
}
pllvco = pllvco * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 8U);
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 25U) + 1U) * 2U;
SystemCoreClock = pllvco/pllr;
break;
default:
SystemCoreClock = msirange;
break;
}
/* Compute HCLK clock frequency --------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/